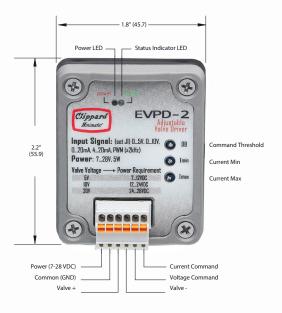

EVP DRIVER

The EVPD proportional valve driver fast-tracks valve control applications. This product is ideal for laboratories and OEM product development and can be customized to fit OEM applications including control parameters. The EVPD produces driver current for Clippard's EVP or DVP series valves proportional to input control signals.

- Plug-and-play interface between Clippard's EVP and DVP series valves and PLCs or other controls
- Linearized valve response right "out of the box"
- · Three selectable valve output ranges
- · Five signal inputs to choose from
- · Easy integration with existing machine controls
- · User-adjustable parameters
- Automatic temperature compensation to maintain constant current
- Two configuration options: stand-alone PCB or enclosed in housing
- Compact size

Adjustment	Min. drive current, max. drive current, command deadband	
Command Set-Point Signal Type	Selectable: 0 to 5 VDC, 0 to 10 VDC, 0 to 20 mA, 4 to 20 mA, PWM @ \geq 2 kHz duty cycle	
Connection	Screw terminals or DIN connector	
Input Impedance	200 kΩ	
LED Indicators	Power, activity, status, and faults	
Mount	Mounting holes or DIN rail	
Operating Temp. Range	0 to 155°F (-18° to 68°C)	
Output	0 to 400 mA (selectable range)	
Power Requirement	7 to 28 VDC @5 watt	
More Details	clippard.com/link/evpd-driver	

The tuning adjustments on the EVPD allow the user to adjust the command signal needed to start opening the valve, adjust the opening current to the valve, and limit the maximum current to the valve to restrict the valve maximum opening and prevent current beyond the valve solenoid's rating. The settings are used by the valve management software in the microcontroller along with driver current feedback to calculate command instructions to the digital PWM controller.

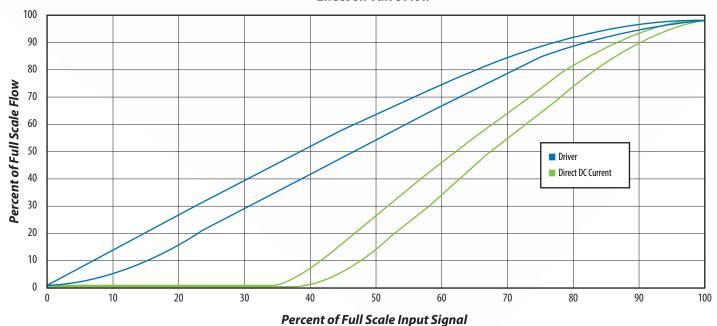

The resulting change to valve performance is shown in the *Effect on Valve Flow* chart for a typical EVP valve (10 VDC coil, 0.06" orifice, 25 psig max).

Power Requirements

Power input requirements are specified as supply voltage ranges for each EVP or DVP valve. Supplying voltages outside of these ranges may result in valve malfunctioning. Power requirements are determined by the valve voltage specification.

EVP Valve Type	Input Voltage Range	EVPD Max. Output
0 to 5 VDC	7 to 12 VDC	400 mA
0 to 10 VDC	12 to 28 VDC	200 mA
0 to 20 VDC	14 to 28 VDC	100 mA

EVPD-1


EVPD-2

Dimensions shown are in inches (millimeters listed in parentheses).

Visit clippard.com for more detailed 2D and 3D drawings.

Effect on Valve Flow

ORDERING INFORMATION

E **EVP Driver**

Driver Assembly in Enclosure

2 **Driver Board** DIN Rail Mounting Clip 2DIN

Example Part Number:

EVPD-1

For more info, scan the QR code or visit clippard.com/link/evpd-driver

